3 research outputs found

    A miniaturized triple-band and dual-polarized monopole antenna based on a CSRR perturbed ground plane

    Get PDF
    This paper proposes a new triple-band monopole antenna based on Complementary Split Ring Resonators (CSRR) perturbing the ground plane (GND). The antenna consists of an inverted-L-shaped monopole fed by a modified microstrip line with two CSRRs cut out of the ground plane. The operational bands are independently controlled by the CSRR unit cell parameters. In addition, the antenna presents a dual-polarization performance (vertical polarization at 2.4 GHz band and horizontal polarization at both 3.6 and 5.9 GHz bands). The designed antenna is fully planar and low profile avoiding the vias with the ground plane and covering the WLAN, WiMAX, and IEEE 801.11p bands at 2.45, 3.6, and 5.8 GHz. A compact prototype ( 0.32λ0×0.32λ0 being λ0 is the wavelength corresponding to the lowest resonance frequency) has been fabricated and measured showing good agreement between simulations and measurements. The measured impedance bandwidths are 10% (2.38-2.63 GHz), 2.5% (3.54-3.63 GHz), and 20% (5.83-7.12 GHz) whereas the measured gains are 1.34, 0.68, and 2.65 dBi at 2.4, 3.6, and 5.9 GHz respectively.This work was supported by PID2019-109984RB-C41

    A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review

    Get PDF
    This paper aims to review some of the available tunable devices with emphasis on the techniques employed, fabrications, merits, and demerits of each technique. In the era of fluidic microstrip communication devices, versatility and stability have become key features of microfluidic devices. These fluidic devices allow advanced fabrication techniques such as 3D printing, spraying, or injecting the conductive fluid on the flexible/rigid substrate. Fluidic techniques are used either in the form of loading components, switching, or as the radiating/conducting path of a microwave component such as liquid metals. The major benefits and drawbacks of each technology are also emphasized. In this review, there is a brief discussion of the most widely used microfluidic materials, their novel fabrication/patterning methods

    A Compact Design for Dual-band Implantable Antenna Applications

    No full text
    This paper presents the development of a dual-band antenna working in the Industrial, Scientific, and Medical (ISM) band (902 – 928 MHz, 2.4 – 2.5 GHz). The proposed antenna is compact, has a frequency-independent response between the lowest and the highest frequency, has a small size of 6 x 6 x 2.54 mm3. This design does not use any via or defected ground plane making the antenna very useful for this kind of application
    corecore